Weak Bialgebras and Monoidal Categories

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Hopf Monoids in Braided Monoidal Categories

We develop the theory of weak bimonoids in braided monoidal categories and show them to be quantum categories in a certain sense. Weak Hopf monoids are shown to be quantum groupoids. Each separable Frobenius monoid R leads to a weak Hopf monoid R ⊗ R.

متن کامل

Tannaka Reconstruction of Weak Hopf Algebras in Arbitrary Monoidal Categories

We introduce a variant on the graphical calculus of Cockett and Seely[2] for monoidal functors and illustrate it with a discussion of Tannaka reconstruction, some of which is known and some of which is new. The new portion is: given a separable Frobenius functor F : A −→ B from a monoidal category A to a suitably complete or cocomplete braided autonomous category B, the usual formula for Tannak...

متن کامل

Hochschild Cohomology of Algebras in Monoidal Categories and Splitting Morphisms of Bialgebras

Let (M,⊗,1) be an abelian monoidal category. In order to investigate the structure of Hopf algebras with Chevalley property (i.e. Hopf algebras having the coradical a Hopf subalgebra) we define the Hochschild cohomology of an algebra A in M. Then we characterize those algebras A which have dimension less than or equal to 1 with respect to Hochschild cohomology. We use these results to prove tha...

متن کامل

Monoidal categories and multiextensions

We associate to a group-like monoidal groupoid C a principal bundle E satisfying most of the axioms defining a biextension. The obstruction to the existence of a genuine biextension structure on E is exhibited. When this obstruction vanishes, the biextension E is alternating, and a trivialization of E induces a trivialization of C. The analogous theory for monoidal n-categories is also examined...

متن کامل

Categories and Quantum Informatics: Monoidal categories

A monoidal category is a category equipped with extra data, describing how objects and morphisms can be combined ‘in parallel’. This chapter introduces the theory of monoidal categories, and shows how our example categories Hilb, Set and Rel can be given a monoidal structure. We also introduce a visual notation called the graphical calculus, which provides an intuitive and powerful way to work ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2011

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2011.616438